3.1.1 \(\int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx\) [1]

3.1.1.1 Optimal result
3.1.1.2 Mathematica [A] (verified)
3.1.1.3 Rubi [A] (verified)
3.1.1.4 Maple [A] (verified)
3.1.1.5 Fricas [A] (verification not implemented)
3.1.1.6 Sympy [B] (verification not implemented)
3.1.1.7 Maxima [A] (verification not implemented)
3.1.1.8 Giac [A] (verification not implemented)
3.1.1.9 Mupad [B] (verification not implemented)

3.1.1.1 Optimal result

Integrand size = 19, antiderivative size = 114 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\frac {5 a x}{16}+\frac {a \sin (c+d x)}{d}+\frac {5 a \cos (c+d x) \sin (c+d x)}{16 d}+\frac {5 a \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d}-\frac {2 a \sin ^3(c+d x)}{3 d}+\frac {a \sin ^5(c+d x)}{5 d} \]

output
5/16*a*x+a*sin(d*x+c)/d+5/16*a*cos(d*x+c)*sin(d*x+c)/d+5/24*a*cos(d*x+c)^3 
*sin(d*x+c)/d+1/6*a*cos(d*x+c)^5*sin(d*x+c)/d-2/3*a*sin(d*x+c)^3/d+1/5*a*s 
in(d*x+c)^5/d
 
3.1.1.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.66 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\frac {a \left (960 \sin (c+d x)-640 \sin ^3(c+d x)+192 \sin ^5(c+d x)+5 (60 c+60 d x+45 \sin (2 (c+d x))+9 \sin (4 (c+d x))+\sin (6 (c+d x)))\right )}{960 d} \]

input
Integrate[Cos[c + d*x]^5*(a + a*Cos[c + d*x]),x]
 
output
(a*(960*Sin[c + d*x] - 640*Sin[c + d*x]^3 + 192*Sin[c + d*x]^5 + 5*(60*c + 
 60*d*x + 45*Sin[2*(c + d*x)] + 9*Sin[4*(c + d*x)] + Sin[6*(c + d*x)])))/( 
960*d)
 
3.1.1.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {3042, 3227, 3042, 3113, 2009, 3115, 3042, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^5(c+d x) (a \cos (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^5 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )dx\)

\(\Big \downarrow \) 3227

\(\displaystyle a \int \cos ^6(c+d x)dx+a \int \cos ^5(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \sin \left (c+d x+\frac {\pi }{2}\right )^5dx+a \int \sin \left (c+d x+\frac {\pi }{2}\right )^6dx\)

\(\Big \downarrow \) 3113

\(\displaystyle a \int \sin \left (c+d x+\frac {\pi }{2}\right )^6dx-\frac {a \int \left (\sin ^4(c+d x)-2 \sin ^2(c+d x)+1\right )d(-\sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \sin \left (c+d x+\frac {\pi }{2}\right )^6dx-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {5}{6} \int \cos ^4(c+d x)dx+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {5}{6} \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \int \cos ^2(c+d x)dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 24

\(\displaystyle a \left (\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}+\frac {5}{6} \left (\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {3}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )\right )\right )-\frac {a \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

input
Int[Cos[c + d*x]^5*(a + a*Cos[c + d*x]),x]
 
output
-((a*(-Sin[c + d*x] + (2*Sin[c + d*x]^3)/3 - Sin[c + d*x]^5/5))/d) + a*((C 
os[c + d*x]^5*Sin[c + d*x])/(6*d) + (5*((Cos[c + d*x]^3*Sin[c + d*x])/(4*d 
) + (3*(x/2 + (Cos[c + d*x]*Sin[c + d*x])/(2*d)))/4))/6)
 

3.1.1.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3113
Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
and[(1 - x^2)^((n - 1)/2), x], x], x, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] 
 && IGtQ[(n - 1)/2, 0]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
3.1.1.4 Maple [A] (verified)

Time = 2.45 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.64

method result size
parallelrisch \(\frac {\left (60 d x +\sin \left (6 d x +6 c \right )+120 \sin \left (d x +c \right )+45 \sin \left (2 d x +2 c \right )+20 \sin \left (3 d x +3 c \right )+9 \sin \left (4 d x +4 c \right )+\frac {12 \sin \left (5 d x +5 c \right )}{5}\right ) a}{192 d}\) \(73\)
derivativedivides \(\frac {a \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {a \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}}{d}\) \(80\)
default \(\frac {a \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {a \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}}{d}\) \(80\)
parts \(\frac {a \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5 d}+\frac {a \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )}{d}\) \(82\)
risch \(\frac {5 a x}{16}+\frac {5 a \sin \left (d x +c \right )}{8 d}+\frac {a \sin \left (6 d x +6 c \right )}{192 d}+\frac {a \sin \left (5 d x +5 c \right )}{80 d}+\frac {3 a \sin \left (4 d x +4 c \right )}{64 d}+\frac {5 a \sin \left (3 d x +3 c \right )}{48 d}+\frac {15 a \sin \left (2 d x +2 c \right )}{64 d}\) \(93\)
norman \(\frac {\frac {5 a x}{16}+\frac {27 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}+\frac {107 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {283 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d}+\frac {133 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d}+\frac {39 a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {5 a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {15 a x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {75 a x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {25 a x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {75 a x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {15 a x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {5 a x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{6}}\) \(212\)

input
int(cos(d*x+c)^5*(a+cos(d*x+c)*a),x,method=_RETURNVERBOSE)
 
output
1/192*(60*d*x+sin(6*d*x+6*c)+120*sin(d*x+c)+45*sin(2*d*x+2*c)+20*sin(3*d*x 
+3*c)+9*sin(4*d*x+4*c)+12/5*sin(5*d*x+5*c))*a/d
 
3.1.1.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.66 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\frac {75 \, a d x + {\left (40 \, a \cos \left (d x + c\right )^{5} + 48 \, a \cos \left (d x + c\right )^{4} + 50 \, a \cos \left (d x + c\right )^{3} + 64 \, a \cos \left (d x + c\right )^{2} + 75 \, a \cos \left (d x + c\right ) + 128 \, a\right )} \sin \left (d x + c\right )}{240 \, d} \]

input
integrate(cos(d*x+c)^5*(a+a*cos(d*x+c)),x, algorithm="fricas")
 
output
1/240*(75*a*d*x + (40*a*cos(d*x + c)^5 + 48*a*cos(d*x + c)^4 + 50*a*cos(d* 
x + c)^3 + 64*a*cos(d*x + c)^2 + 75*a*cos(d*x + c) + 128*a)*sin(d*x + c))/ 
d
 
3.1.1.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 216 vs. \(2 (107) = 214\).

Time = 0.34 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.89 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\begin {cases} \frac {5 a x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {15 a x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {15 a x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {5 a x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {5 a \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {8 a \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {5 a \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {4 a \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {11 a \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} + \frac {a \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} & \text {for}\: d \neq 0 \\x \left (a \cos {\left (c \right )} + a\right ) \cos ^{5}{\left (c \right )} & \text {otherwise} \end {cases} \]

input
integrate(cos(d*x+c)**5*(a+a*cos(d*x+c)),x)
 
output
Piecewise((5*a*x*sin(c + d*x)**6/16 + 15*a*x*sin(c + d*x)**4*cos(c + d*x)* 
*2/16 + 15*a*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + 5*a*x*cos(c + d*x)**6/ 
16 + 5*a*sin(c + d*x)**5*cos(c + d*x)/(16*d) + 8*a*sin(c + d*x)**5/(15*d) 
+ 5*a*sin(c + d*x)**3*cos(c + d*x)**3/(6*d) + 4*a*sin(c + d*x)**3*cos(c + 
d*x)**2/(3*d) + 11*a*sin(c + d*x)*cos(c + d*x)**5/(16*d) + a*sin(c + d*x)* 
cos(c + d*x)**4/d, Ne(d, 0)), (x*(a*cos(c) + a)*cos(c)**5, True))
 
3.1.1.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.74 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\frac {64 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} a - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a}{960 \, d} \]

input
integrate(cos(d*x+c)^5*(a+a*cos(d*x+c)),x, algorithm="maxima")
 
output
1/960*(64*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x + c))*a - 5*( 
4*sin(2*d*x + 2*c)^3 - 60*d*x - 60*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 
 2*c))*a)/d
 
3.1.1.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.81 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\frac {5}{16} \, a x + \frac {a \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac {a \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac {3 \, a \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac {5 \, a \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac {15 \, a \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} + \frac {5 \, a \sin \left (d x + c\right )}{8 \, d} \]

input
integrate(cos(d*x+c)^5*(a+a*cos(d*x+c)),x, algorithm="giac")
 
output
5/16*a*x + 1/192*a*sin(6*d*x + 6*c)/d + 1/80*a*sin(5*d*x + 5*c)/d + 3/64*a 
*sin(4*d*x + 4*c)/d + 5/48*a*sin(3*d*x + 3*c)/d + 15/64*a*sin(2*d*x + 2*c) 
/d + 5/8*a*sin(d*x + c)/d
 
3.1.1.9 Mupad [B] (verification not implemented)

Time = 16.48 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.94 \[ \int \cos ^5(c+d x) (a+a \cos (c+d x)) \, dx=\frac {5\,a\,x}{16}+\frac {\frac {5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{8}+\frac {39\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{8}+\frac {133\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{20}+\frac {283\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}+\frac {107\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24}+\frac {27\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^6} \]

input
int(cos(c + d*x)^5*(a + a*cos(c + d*x)),x)
 
output
(5*a*x)/16 + ((27*a*tan(c/2 + (d*x)/2))/8 + (107*a*tan(c/2 + (d*x)/2)^3)/2 
4 + (283*a*tan(c/2 + (d*x)/2)^5)/20 + (133*a*tan(c/2 + (d*x)/2)^7)/20 + (3 
9*a*tan(c/2 + (d*x)/2)^9)/8 + (5*a*tan(c/2 + (d*x)/2)^11)/8)/(d*(tan(c/2 + 
 (d*x)/2)^2 + 1)^6)